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Abstract

Numerical models of beam behavior in cyclic accelerators are typically obtained by iterating a map which
transforms the phasespace coordinates of representative particles to their coordinates one beam turn later. For such
purposes as dynamic aperture determination or simulation of extended processes, many iterations, 107 or more,
may be used. Therefore, it is important to establish that limited numerical precision does not result in unacceptable
cumulative error. Adiabatic invariants have good stability with respect to numerical noise under iteration of a
symplectic map. If the map is time independent, the effects of roundoff on the map itself are coherent; a symplectic
map offers no protection from this sort of error. In diagnosingapparent cumulative error, it is very important to look
at results for precisely matched initial distributions; otherwise numerical error can be confounded with the slow
evolution of the non-stationary distribution. A numerical evaluation of the Jacobian determinant gives a useful
quantitativemeasure of the precision in the numerical representation of a symplectic map. This paper specializes to
a one-dimensional longitudinal phasespace map for synchrotron motion. However, the approach is general enough
to be applicable, at least in part, to other maps.

Introduction

The general idea of studying the evolution of a beam particle distribution in a cyclic accelerator by iterating single-
particle, single-turn maps is ubiquitous in beam physics. An example of such a map is a transfer matrix produced by
a matrix multiplication code like MAD[1] or TRANSPORT.[2] In these particular instances the component matrices
are not symplectic above first order, and emittance of a distribution within a region of stable motion may grow or
sometimes shrink.[3] The emittance change results from defects in the map and would appear even with ideal nu-
merical precision. A symplectic map is one that represents an exact solution for some Hamiltonian; it preserves all
of the Poincare invariants. A map is symplectic if it satisfies the condition

J TSJ = S , (1)

where S is the so-called symplectic unit matrix (
0 I
−I 0

)
(2)

and J is the Jacobian matrix, the matrix whose determinant J , called the Jacobian, is employed in this note. An
explicit expression for J is evident from eq. 5 giving J for a particular map. Symplectic maps can be produced
by an inherently symplectic technique like Lie transforms, for example, or they can be, as it is said, symplectified
by adding the necessary terms. However, it is also possible that the effect of truncation error in evaluating the map
might destroy the symplectic character at some level. This is subject to numerical test; the numerical evaluation of
the Jacobian determinant at a precision greater than the precision used in the mapping can expose discrepancies in
the phase space volume preservation — systematic or stochastic, general or localized in a region of phase space.
For a one-dimensional map, area preservation and symplecticity are equivalent. For maps of higher dimension, the
Jacobian test remains a useful diagnostic, but the symplecticity condition eq. 1 is the full test for symplecticity.

It has been shown by Forest[4] that a map in which the potential is applied in impulses interspersed with drifts
is symplectic regardless of how faithful it is to the dynamics of the system in other respects. It constitutes a so-
called kick integrator for the system’s equations of motion. The equations for synchrotron motion with the rf potential
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appearing across an isolated gap fall naturally into this pattern without approximation:[5]

ϕi,n =
ωs,n
ωs,n−1

ϕi,n−1 + 2πh(Si,n− 1) (3)

εi,n = εi,n−1 + eV (ϕi,n + φs,n)− eV (φs,n) ,

where ϕ is a phase difference between a particle and the synchronous phase φs, likewise ε is the energy difference
between a particle and the synchronous energy Es; i labels particles, and n labels turns. All symbols are defined in
Table I.

The ϕ, ε variables are not canonically conjugate, but it is simple to rewrite the map with the substitution ei,n =
εi,n/ωi,n as the map M

ϕi,n =
ωs,n
ωs,n−1

ϕi,n−1 + 2πh(Si,n− 1) (4)

ei,n =
ωs,n−1

ωs,n
ei,n−1 +

e

ωs,n
[V (ϕi,n + φs,n)− V (φs,n)] .

The Jacobian is

J(M) =

∣∣∣∣∣ ∂(ϕi,n, ei,n)
∂(ϕi,n−1, ei,n−1)

∣∣∣∣∣ =

∣∣∣∣∣
ωs,n
ωs,n−1

e
ωs,n

eV ′

2πh ∂Si,n
∂ei,n−1

ωs,n−1

ωs,n
+ e

ωs,n
V ′2πh ∂Si,n

∂ei,n−1

∣∣∣∣∣ ≡ 1 (5)

However, the coordinates are subject to numerical noise, i. e. rounding error, for both the kick and the drift in
the map. Therefore, there is a continuous stochastic contribution to the trajectories which can be interpreted as an
extremely small fluctuating force. One approach to estimating the effects of truncation is to estimate the Fourier
spectrum of this force. For one dimensional motion the action is an adiabatic invariant proportional to the emittance.
Therefore, one can anticipate that emittance growth will be strongly inhibited compared to fluctuation of the phase of
motion along trajectories.[6] However, if the noise spectrum were to have significant strength at frequencies as low
as twice the synchrotron frequency, then emittance growth would certainly occur. The preservation of emittance is
not directly explained by the adiabatic theorem, because the high frequency components apply force on a time scale
short with respect to the synchrotron period and yet have little effect on the adiabatic invariant.

Coherent Excitation from Truncation Error

In a tracking model, the map may be static or it may be time dependent. If the map changes, the error in evaluating the
map at different times will be an additional random perturbation. However, if the same identical map is iterated may
times, whatever error is made in its numerical representation is fixed and makes a coherent error in the macro-particle
trajectories.

This paper arises from studies of the source of apparent numerical instability with the map eq. 3. Fig. 1 shows
a phase space trajectory taken over 106 iterations for the centroid of a compact distribution of four particles initially
centered on the stable fixed point. The parameters are fixed throughout the calculation, providing a non-accelerating
bucket above the synchrotron transition energy. The coordinate axes in the figure are MeV on the ordinate and rf
phase divided by the harmonic number on the abscissa. The parameters for the map are those of the Tevatron at
injection energy (Table II), and the four test particles are at ϕ = 180◦ ± 1◦, ε = ±1 MeV. In this period of time the
centroid trajectory has grown by about 2 · 10−10 of the bucket width, that is about 2 · 10−16/turn. Note that there is
an underlying dipole oscillation with amplitude about 10−9 of the bucket width; it is not spurious. It results from the
dependence of phase-slip on energy. The particles below the synchronous energy slip less than those above, because
the energies are above transition. Since the distribution is symmetric about the stable fixed point but not matched to
the Hamiltonian flow, the macro-particle’s centroid, which is started at (0,0), averages below zero in energy.
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The centroid trajectory shown in Fig. 2 results from 106 iterations with an approximate map that employs the
same slip factor for all macro-particles. In this figure the final trajectory extends only about 3 · 10−16 of a bucket
width. Thus, the average increment to the centroid is approximately 3 · 10−22/turn. If one looks at just 104 turns
as in Fig. 3, the average systematic increment is larger but of the same order. However, on this scale one can see
also the stochastic nature of the centroid motion; the centroid trajectory crosses itself many times. Because the major
distinction of the simpler map is removing differences in slip velocity above and below the synchronous energy, it is
a reasonable inference that much of the drift of the centroid recorded in Fig. 1 arises from the fact that the little four-
particle distribution is not quite matched to the original map, i. e., is not a stationary distribution. The outward spiral
in Fig. 2 appears to be approximately linear; it does not exhibit exponential growth like a collective beam instability.
Indeed there is no collective mechanism; only single particle motion in a nearly linear potential is involved.

After removing the effect of the small mismatch in the initial distributionby using the simplified map, there is still
a small systematic outward spiral of centroid, a coherent change of the mean energy of the distribution. When the map
is used below transition for 107 turns, the centroid plot appears as shown in Fig. 4. Not only is the centroid motion
apparently fully stochastic in this case, but also the region of wander is two orders of magnitude smaller. Given that
the same map is used above and below transition, attention is naturally drawn to the constant term eV (φs,n) in the
energy kick; for an ordinary rf waveform, this term is proportional to sin(0) below transition and to sin(π) above
transition. A value for the sine differing from zero by 10−19 could introduce about this amount of energy/turn.

These phenomena may be called instability of numerical origin, but they are not of the stochastic type often dis-
cussed in a numerical analysis context. For the systematic energy increment there is a question whether the sine
function or its argument is the culprit. The sine was absolved by evaluating it in small steps either side of π. In the
following discussion numbers are described as double precision, meaning that their computer representation is eight
byte floating point, or quadruple precision, meaning that the computer representation is sixteen eight-bit bytes. When
π was evaluated in quadruple precision and the argument of the double precision sine was taken in steps of rational
binary fractional increments of π in the range (1 ± 10−5)π, the plot of the sine was apparently smooth and linear,
missing zero at argument π by 10−51. Furthermore, sinϕ− π + ϕ produces a smooth cubic around the zero in this
range, as shown in Fig. 5. These results show that the error in the sine function is not set by the scale of the maximum
amplitude but rather scales with the value of the function. Thus, the observed energy increment must result from the
truncation of the value of the argument π to double precision, i. e., possibly an error of as much as∼ 10−14. One may
reasonably question whether such a small energy input is of practical importance. The usual answer would, of course,
be no, but if one notices the phenomenon without knowing the cause, it may raise the question of the fundamental
correctness of the formulation. The following examination of effects of limited numerical precision has the object
of helping to validate map-based numerical models. Incidentally, in this special case, should the numerical error be
a problem, there is a simple work-around; the plus sign in front of the second term on the right-hand side of the first
equation in the map can be changed to a minus sign above the transition energy. Then the stable phase will remain
at less than π/2 but the direction of phase flow will reverse as it should.

Numerical Test of Area Preservation

The map in eq. 3 is supposed to represent the equations of motion for a conservative process. Therefore, the phase
space area enclosed by a trajectory should be conserved when parameters change slowly, and the map should be
strictly area preserving. The discussion above illustrates that one can easily misjudge the cumulative error arising
from the map by tracking an unmatched test distribution. Getting a highly matched initial distribution is not entirely
simple, although, with care good approximations can be made. It is desirable to have a check of the map not depend-
ing on the properties of a test distribution. It is possible to verify that a map is not only area preserving in principle
but also in practice by evaluating the Jacobian determinant numerically from coordinate differences. Additional cal-
culations with the coordinates must be made at higher precision than used in the map itself to permit unambiguous
association of error in the Jacobian with errors in the map alone. One can evaluate each of the four terms in the Ja-
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cobian determinant eq. 5 analytically. This provides a check on the precision of the numerical evaluation in this case
and helps to understand the practical tradeoff between precision of the difference approximation to the derivatives
depending on small separation of coordinates and the loss of significant figures, which is reduced by larger separation
of coordinates. The error in approximating the derivative might in principle be reduced by mapping more points and
using a higher order formula. Given that the mapped points are not on a uniform grid, calculation of the derivatives
above first order differences would be tedious.

In Fig. 6 we give a distribution of the Jacobian - 1 for eq. 3 evaluated numerically for a specific case which is, as
before, like the Tevatron at injection. The evaluations are made on a 25× 25 grid spaced at 10◦ intervals in rf phase
and 10 MeV in energy. The grid is centered on the synchronous phase of 180◦ and contains some points outside of
the bucket. The cell size for evaluation of the derivatives is 0.2◦× 0.2 MeV for this case. The longest bar in the plot
is 1.1 · 10−10. This choice of cell size is purely arbitrary, providing an upper limit on the difference. The limit can be
optimized by seeking the minimum of the maximum difference as a function of cell size. Two more cases are shown:
Fig. 7, with a longest bar of 3.3 · 10−12, gives the distribution for cells of 0.02× 0.02 and Fig. 8, with a longest bar
of 1.1 · 10−11, for cells of 0.005× 0.005. In Fig. 9, the maximum absolute value for the difference J - 1 is plotted as
a function of the length of the cell edges. For the particular parameters of the example, the minimum value for the
error in the Jacobian is obtained with cell dimensions of about 0.02◦× 0.02 MeV.

Even in Fig. 8, where the cancellation in evaluating the derivatives in the Jacobian appears dominant, the vestiges
of the same systematic distribution are still apparent. Note that J - 1 is independent of E, and changes sign at ±π/2;
it appears to be essentially proportional to cosϕ. The systematic distribution almost surely arises from the map, with
which it has a shared symmetry, rather than from the limitation to first order differences for the derivatives, which
one would expect to show up in approximately comparable degree in both energy and phase differences. Given the
inherent cancellation in the difference equations, an error of a few parts in 1012 in the Jacobian derivative is very
satisfactory. Its systematic character looks consistent with the map.

Constancy of Adiabatic Invariants Under Stochastic Perturbation

Quantities which are adiabatic invariants are more stable than other functions of the coordinates under iteration with
a map representing the equations of motion. This is familiar to many, but the underlying reason for the insensitivity
of these quantities to rapidly fluctuating perturbation is not elementary. The discussion on pp 291 – 297 of Arnold’s
Mathematical Methods of Classical Mechanics[6] provides the basis for understanding but does not explicitly state
the result. In the present context of numerical tests it is interesting to compare a plot of longitudinal emittance vs. time
with a plot of some other function of the coordinates like, for example, centroid position. This particular comparison
will be good only if there is no comparable or greater coherent motion of the centroid.

Fig. 10 shows the scaled rms emittance minus 0.5 eVs for a nominal 0.5 eVs closed contour during 106 iterations,
where the scaling sets the initial value to precisely 0.5. The parameters are again those of Table II for the above tran-
sition condition. It is constant to±10−5 with no change in mean value. This is an upper limit on the true fluctuation
of the emittance, because the rms is not in principle a determination of a phase space area. The centroid locus, how-
ever, has a spread of a few 10−4 of the contour radius. Perhaps one might predict somewhat better constancy of the
emittance on the basis of the other results on precision; however, it is at least an order of magnitude less variable than
the mean and constant enough for any practical purpose. An analysis which avoids using the rms emittance might
lower the limit for numerical fluctuation of the emittance.

Summary

The observation of coherent growth of synchrotron oscillation in tracking for a non-accelerated bunch has led to a
study of effects of numerical error in extended simulations using iterated maps. The source of the growing oscillation
was identified as the truncation error in the synchronous phase of π radians. Because this error was constant for the
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entire calculation, its effect was cumulative and coherent. The effects of fluctuating truncation and cancellation error
were also considered. The difficulty in distinguishingemittance growth resulting from the evolution of an imperfectly
matched initial distribution from that arising from numerical error in the map has led to development of a direct, non-
iterative test of the map. The numerical stabilityof adiabatic invariants compared to other functions of the coordinates
was illustrated.
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Table 1: Definition of symbols in the difference equations

Symbol Meaning
φ rf phase
φs synchronous phase
ϕi difference between particle phase and φs
i index for particles
n index for turns
h rf harmonic number
e elementary particle charge (> 0)
Es synchronous energy
β relativistic velocity v/c
γ relativistic energy Es/m◦c2

γ
T

γ of transition energy in synchrotron
V total potential
ω◦ angular frequency of beam circulation
ωs angular frequency of small amplitude synchrotron oscillations
εj difference between energy of jth particle and Es
Si,n phase slip/turn of ith particle wrt synchronous particle

Table 2: Parameters used in numerical tests of the synchrotron motion map

Parameter Symbol Value Units
mean reference orbit radius R◦ 1000.0 m
synchronous energy Es

above transition 150.938 GeV/c
below transition 17.777 GeV/c

transition energy/m◦c2 γ
T

18.6
slip factor γ−2

T
− γ−2 η

above transition 2.8515 · 10−3

below transition 3.1249 · 10−3

rf peak voltage Vrf 0.4 MV
rf harmonic h 1113
synchrotron tune νs 1.157 · 10−3

bucket height HB 110 MeV
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Figure 1: Locus of centroid of four macroparticles in a stationary Tevatron bucket at injection over 106 turns. The
ordinate is in MeV difference from the synchronous energy and the abcissa is rf phase ϕ divided by the harmonic
number h = 1113. The macroparticles closely surround the stable fixed point at ∆E = ±1 MeV and ∆ϕ = ±1◦.

Figure 2: Simillar to Fig. 1 except that the map is simplified to apply the same slip factor to all particles. The modified
map is still symplectic, however.
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Figure 3: Simillar to Fig. 2 except that only 104 turns are tracked

Figure 4: Simillar to Fig. 3 except that the tracking is done at the energy below transition giving the same synchtron
tune and bucket area
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Figure 5: The third and higher order terms for the double precision sine function at ±10−5π around π, i. e., the sine
in this range less the difference between π and the arguement

Figure 6: Plot of Jacobian determinant - 1 for synchrotron motion map on a grid with cells 0.2◦ × 0.2 MeV; the
parameters are those of a non-accelerating bucket at 150 GeV in the Tevatron accelerator.
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Figure 7: Like Fig. 6 with cell size 0.02◦ × 0.02 MeV

Figure 8: Like Fig. 6 with cell size 0.005◦ × 0.005 MeV
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Figure 9: The absolute maximum Jacobian - 1 as a function of the side of the square cell used in evaluating the deriva-
tives. The minimum in this curve establishes the cell size to find the best upper limits on the Jacobian -1 distribution.

Figure 10: Fluctuation of the emittance during 106 turns for a nominal 0.5 eVs closed contour using Tevatron injection
parameters. The ordinate is the difference between 0.5 and the rms emittance scaled to approximately 0.5.
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